Definisi Barisan:
Barisan adalah
daftar urutan bilangan dari kiri ke kanan yang mempunyai karakteristik atau
pola tertentu. Setiap bilangan dalam barisan merupakan suku dalam barisan.
Contoh:
1, 2, 3, 4, 5, 6, …,…,…,…,… dst
2, 4, 6, 8, 10, 12, …,…,…,… dst.
Definisi Deret:
Penjumlahan suku-suku dari suatu barisan disebut deret. Jika U1, U2, U3, ….. Un,
maka U1 + U2 + U3 +… +Un adalah deret.
A. Baris dan Deret Aritmatika
Definisi Baris Aritmatika:
Jika beda
antara suatu suku apa saja dalam suatu barisan dengan suku sebelumnya adalah
suatu bilangan tetap b, maka barisan ini adalah barisan aritmatika.
Bilangan tetap b itu dinamakan beda dari barisan.
Polanya : a, a+b, a+2b, a+3b,…..,a+(n-1)b
Dengan:
o a = U1= Suku pertama
o b = beda
o n = banyaknya suku
o Un = Suku ke-n
Suku pertamanya adalah 3 (a=3) dan bedanya adalah 2 (b=2), banyaknya suku ada 5 (n=5), suku ke-5 adalah 11 (U5 = 11).
Deret Aritmatika
adalah jumlah dari baris aritmatika.
Contoh:
3 + 5 + 7 + 9 + 11
o Ut = Suku
tengah
o Sn = Jumlah n suku pertama
Berikut adalah cara untk mengetahui nilai
dari beberapa hal yang disebut di atas:
Beda b = Un – Un-1
Suku ke-n
Un =
a + (n-1)b Un = Sn – Sn-1
Jumlah n suku pertama
Sn = ½ n (U1 + Un)
Sn = ½ n (
2a + (n-1)b )
Nilai tengah Ut = ½ (U1 + Un)
B. Baris dan Deret Geometri
Definisi Barisan Geometri:
Jika rasio antara suku apa saja dalam suatu barisan
dengan suku sebelumnya merupakan suatu bilangan tetap r, maka barisan tersebut
adalah barisan geometri.bilangan tetap r disebut rasio dari barisan.
Contoh:
2,6,18,48….. adalah barisan geometri dengan rasio 3.
Artinya adalah nilai pada Un = 3Un-1.
Definisi Deret Geometri:
2,6,18,48….. adalah barisan geometri dengan rasio 3.
Artinya adalah nilai pada Un = 3Un-1.
Definisi Deret Geometri:
Jika U1, U2, U3, …..Un adalah barisan
geometri, maka jumlah U1 + U2 + U3 +… + Un disebut deret geometri.
Rumus jumlah n
suku pertama dari deret geometri adalah:
Sn = a( 1- rn ) / 1 – r , jika r <
1 dan
Sn = a( rn - 1) / r – 1 , jika r > 1
Definisi Barisan :
Barisan adalah daftar urutan bilangan dari kiri ke kanan yang mempunyai
karakteristik atau pola tertentu. Setiap bilangan dalam barisan
merupakan suku dalam barisan.
Make Money Online : http://ow.ly/KNICZ
Make Money Online : http://ow.ly/KNICZ
Barisan dan Deret
(Matematika XII)
BARISAN DAN DERET
Definisi Barisan :
Barisan adalah daftar urutan bilangan dari kiri ke kanan yang mempunyai
karakteristik atau pola tertentu. Setiap bilangan dalam barisan
merupakan suku dalam barisan.
Contoh :
1,2,3,4,5,6,…,…,…,…,… dst
2,4,6,8,10,12,…,…,…,… dst
Definisi deret :
Penjumlahan suku-suku dari suatu barisan disebut deret. Jika
U1,U2,U3,…..Un maka U1 + U2 + U3 +… +Un adalah deret.
Contoh :
1 + 2 + 3 + 4 +… + Un
2 + 4 + 6 + 8 +… + Un
A. Baris dan Deret Aritmatika
Definisi baris aritmatika :
Jika beda antara suatu suku apa saja dalam suatu barisan dengan suku
sebelumnya adalah suatu bilangan tetap b maka barisan ini adalah barisan
aritmatika. Bilangan tetap b itu dinamakan beda dari barisan.
Polanya : a, a+b, a+2b, a+3b,…..,a+(n-1)b
Dengan
o a = U1= Suku pertama
o b = beda
o n = banyaknya suku
o Un = Suku ke-n
Suku pertamanya adalah 3 (a=3) dan bedanya adalah 2 (b=2), banyaknya
suku ada 5 (n=5), suku ke-5 adalah 11 (U5 = 11).
Deret aritmatika adalah jumlah dari baris aritmatika.
Contoh : 3 + 5 + 7 + 9 + 11
o Ut = Suku tengah
o Sn = Jumlah n suku pertama
Berikut adalah cara untk mengetahui nilai dari beberapa hal yang disebut
di atas :
· Beda
b = Un – Un-1
· Suku ke-n
Un = a + (n-1)b
Un = Sn – Sn-1
· Jumlah n suku pertama
Sn = ½ n (U1 + Un)
Sn = ½ n ( 2a + (n-1)b )
· Nilai tengah
Ut = ½ (U1 + Un)
B. BARIS DAN DERET GEOMETRI
Definisi barisan geometri :
Jika rasio antara suku apa saja dalam suatu barisan dengan
suku sebelumnya merupakan suatu bilangan tetap r maka barisan tersebut
adalah barisan geometri.bilangan tetap r disebut rasio dari barisan.
Contoh :
2,6,18,48….. adalah barisan geometri dengan rasio 3. Artinya adalah
nilai pada Un = 3Un-1.
Definisi deret geometri :
Jika U1,U2,U3,…..Un adalah barisan geometri maka jumlah U1 + U2 + U3 +…
+Un disebut deret geometri.
Rumus jumlah n suku pertama dari deret geometri adalah :
Sn = a( 1- rn ) / 1 – r , jika r < 1 dan
Sn = a( rn - 1) / r – 1 , jika r > 1
Make Money Online : http://ow.ly/KNICZ
Make Money Online : http://ow.ly/KNICZ
Barisan dan Deret
(Matematika XII)
BARISAN DAN DERET
Definisi Barisan :
Barisan adalah daftar urutan bilangan dari kiri ke kanan yang mempunyai
karakteristik atau pola tertentu. Setiap bilangan dalam barisan
merupakan suku dalam barisan.
Contoh :
1,2,3,4,5,6,…,…,…,…,… dst
2,4,6,8,10,12,…,…,…,… dst
Definisi deret :
Penjumlahan suku-suku dari suatu barisan disebut deret. Jika
U1,U2,U3,…..Un maka U1 + U2 + U3 +… +Un adalah deret.
Contoh :
1 + 2 + 3 + 4 +… + Un
2 + 4 + 6 + 8 +… + Un
A. Baris dan Deret Aritmatika
Definisi baris aritmatika :
Jika beda antara suatu suku apa saja dalam suatu barisan dengan suku
sebelumnya adalah suatu bilangan tetap b maka barisan ini adalah barisan
aritmatika. Bilangan tetap b itu dinamakan beda dari barisan.
Polanya : a, a+b, a+2b, a+3b,…..,a+(n-1)b
Dengan
o a = U1= Suku pertama
o b = beda
o n = banyaknya suku
o Un = Suku ke-n
Suku pertamanya adalah 3 (a=3) dan bedanya adalah 2 (b=2), banyaknya
suku ada 5 (n=5), suku ke-5 adalah 11 (U5 = 11).
Deret aritmatika adalah jumlah dari baris aritmatika.
Contoh : 3 + 5 + 7 + 9 + 11
o Ut = Suku tengah
o Sn = Jumlah n suku pertama
Berikut adalah cara untk mengetahui nilai dari beberapa hal yang disebut
di atas :
· Beda
b = Un – Un-1
· Suku ke-n
Un = a + (n-1)b
Un = Sn – Sn-1
· Jumlah n suku pertama
Sn = ½ n (U1 + Un)
Sn = ½ n ( 2a + (n-1)b )
· Nilai tengah
Ut = ½ (U1 + Un)
B. BARIS DAN DERET GEOMETRI
Definisi barisan geometri :
Jika rasio antara suku apa saja dalam suatu barisan dengan
suku sebelumnya merupakan suatu bilangan tetap r maka barisan tersebut
adalah barisan geometri.bilangan tetap r disebut rasio dari barisan.
Contoh :
2,6,18,48….. adalah barisan geometri dengan rasio 3. Artinya adalah
nilai pada Un = 3Un-1.
Definisi deret geometri :
Jika U1,U2,U3,…..Un adalah barisan geometri maka jumlah U1 + U2 + U3 +…
+Un disebut deret geometri.
Rumus jumlah n suku pertama dari deret geometri adalah :
Sn = a( 1- rn ) / 1 – r , jika r < 1 dan
Sn = a( rn - 1) / r – 1 , jika r > 1
Make Money Online : http://ow.ly/KNICZ
Make Money Online : http://ow.ly/KNICZ
0 komentar:
Posting Komentar