Jenis Operasi
|
Hukum dan sifat-sifat Operasi
|
|
1
|
Gabunan (Union)
|
A U B = B U A disebut sifat komutatif gabungan
(A U B) U C = A U (B U C) disebut sifat asosiatif gabungan
A U Ø = A
A U U = U
A U A = A
A U A’ = U Disebut
sifat komplemen gabungan
|
2
|
Irisan (intersection)
|
A W B = B W A disebut sifat komutatif irisan
A W A = A
A W = Ø
A W U = A
A W A’ = Ø disebut sifat komplemen irisan
(A W B) W C = A W (B W A) disebut sifat asosiatif irisan
|
2
|
Distributif
|
A U (B W C) = (A U B) W (A U C); disebut sifat distributif
gabungan terhadap irisan.
A W (B U C) = (A W B) U (A W C); disebut sifat distributif
irisan terhadap gabungan.
|
3
|
Selisih
|
A – A = Ø
A – Ø = A
A – B = A W B’
A – (BUC) = (A – B)W (A – C)
A – (B W C) = (A – B)U(A – C)
|
4
|
Komplemen
|
(A’)’ = A
U’ = Ø
Ø’ = U
AUA’ = U
AWA’ = U
AWA’= Ø
|
5
|
Banyaknya Anggota
|
n(A) + n(B) K n(AUB)
n(AUB) = n(A) + n(B) – n(AWB)
n(AUBUC) = n(A) + n(B) + n(C) – n(AWB) – n(BWC) – n(CWA) +
n(AWBWC)
n(A) + n(B) = n(AUB) + n(AWB)
n(A) + n(B) + n(C) =n(AUBUC) + n(AWB) + n(AWC) + n(BWC) –
n(AWBWC)
|
Jumat, 19 Agustus 2016
Operasi Himpunan (3)
Label:
Operasi Himpunan
Langganan:
Posting Komentar (Atom)
0 komentar:
Posting Komentar